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Introduction

« Significant progress toward Mars Sample Return (MSR)
identified as one of the highest-priority goals in the
Planetary Sciences Decadal Survey (2011)

 NASA and JPL are conducting development activities to
mature MSR-related technologies

— Sampling system design trades

— Mars Ascent Vehicle (MAV) concept design trades
— MAV Lander concept design trades

— and more...

Objective: Provide an overview of the MAV design space, with a
focus on recent aeroheathing/TPS design trades
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Potential Mars Sample Return — Notional
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MAV Studies Tradespace

Lander Trades

— Mobile MAV vs Fetch Rover
 Affects packaging volume and mass

— RTG vs Solar Power
« Affects MAV thermal limits and lander power /energy regs
Mission Trades

— Landing site and target altitude (site for Mars 2020 will be chosen by
Science)

— Size of payload (will be driven by Mars 2020 tube design and additional
requirements assigned to OS)

MAV trades
— Type of prop to use (solids, hybrids, liquids)
— RCS approach (cold gas, warm gas, passive stabilization, mixed)
— Internal redundancy (single string vs selected redundancy vs block)
— Staged vs SSTO
— Faired or direct payload
— Vertical vs inclined launch
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Orbiting Sample Concept

« The payload for the MAV would be the Orbiting Sample (OS)

e The OS is assumed to be mounted to the MAV when it
departs from Earth

« As the number and size of samples to be returned grows,
the OS grows as well

— Drives MAV size and mass 24 cm

20cm Qs
« MAV assumes 16 cm
Thermal Protection e 0s
System (TPS)
material on forward
hemisphere
— No Fairing
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MAV Mission Concept Definition

« Mission concept objectives and constraints:

Consider candidate M2020 landing sites
« Launch from any latitude |$|<30 deg
« Launch from any elevation > -2.5 km

Inject OS into a 479x479 km altitude orbit,

» Periapse altitude above 300 km altitude, to
ensure at least a decade of orbital lifetime and
reduce requirements on rendezvous orbiter

« Mission concept phases:

Pre-launch: warm up, OS loading,
erection, system initialization, pyros fired

Liftoff: full thrust, climb until clearing the
launch tube

First burn: trajectory steered using Thrust
Vector Control (TVC) to aim at target Main
Engine Cut Off (MECO) conditions

Coast: unpowered flight; vehicle controlled
with RCS

Second burn: orbit circularization/injection
OS release
Post release maneuvers
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MAV Point of Departure (PoD) Configuration

% - Notional MAV uses a
AN — Orbiting Sample hybrid propulsion system

‘,/,\ AN . with MON3O0 oxidizer and
= = = Avionics, Telecom SpP7 (wax-based) fuel

— Allows for storage

idizer Tank
<—|_OXI
temperatures as low
=f\» = Antenna as -72C, reducing
e .
=7 4 — e Tank power requirements
" ° e for an MSR Lander
4 — .
bl ¥ RCS and Motor Propulsion while on the surface
L Control Elements of Mars
o - S Hybrid Motor

RCS Thrusters Ascent through Mars
atmosphere and delivery of
OS to orbit requires a
robust MAV design

Nozzle and LITVC
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Altitude (MOLA), km

Atmospheric Density, kg/m3

MAV Example Ascent Trajectories
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MAV ascent trajectory leads to different environments than typical entry
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14

Ascent Aeroheating

Sutton-Graves
® LAURA-5 (laminar)
— — Kn =0.001

 Heating based on 99% heat load <
trajectory 5 of

« CFD-based aerothermal environments
— LAURA-5 code; axisymmetric 5|

geometry, laminar flow af
— Radiative equilibrium wall (¢ = 0.8),
super-catalytic
— 8-species, one-temperature model . - p-s pys o
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Heating is small
relative to entry
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TPS
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TPS Design — PoD Design

1400
 PoD TPS design assumed use of 120
Shuttle tile material « 1000
— TUFl-infiltrated FRCI-12 tile 3 e00
« TUFI provides impact 2 600
resistance/robustness o o
* Assumed 4 mm minimum
thickness due to tile friability 200
— RTV-560 adhesive 0
— Composite substructure with
standoffs
« 1D transient thermal analysis Sene
— CFD-based aerothermal 1;55/23
environments w/25% margin L 92E+0
1.43E+03
1.80E+03

PoD TPS choice was primarily driven
by handling considerations; thickness Total
by manufacturability assumptions

TUFI: Toughened Unipiece Fibrous Insulation
FRCI: Fibrous Refractory Composite Insulation

100

Mass
kg
0.42713
0.03498
0.03584
0.43684

200

Vol

m3
3.26E-04
1.82E-04
2.51E-05
2.43E-04
3.51E-04

0.93480 kg
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Other TPS Material Options

Currently investigating standoff TPS design using high-
temperature metallic materials

— Potential benefits in manufacturability and robustness
— Options analyzed so far: Beryllium, Niobium, Titanium,

Inconel

« Also planning to assess Carbon/Carbon composite structures

In near future as well

Beryllium TPS sizing example:

Beryllium
Dens Mass Vol Tb Tfinal w/FoS Mass
kg/m3 kg m3 in cm cm kg in
2.64E+03 0.04122 1.56E-05 AZ-2100-IECW White Paint  0.0050  0.0127  0.0127 0.0050
1.84E+03 0.40474 2.20E-04 Beryllium 00714 018127 0.1812 0.0714
Standoff gap 0.3000  0.3000
Total 0.44596 kg
Total Thickness ~ 0.4939 | 0.4939
Current Limit
Peak Surface Temp, K 811 1273 AZ-2100-IECW White Paint
Peak Bondline Temp, K 811 811 Beryllium

Temperature, K
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Conclusions and Future Work

 MAV design studies continuing

— Trades/analyses (e.g., GN&C, propulsion)

— Preparation for proposed Earth demo flight in 2019
 MAV aeroheating/TPS

— Continue aeroheating trades/analyses
* Revisit ejectable TPS for on-orbit thermal control
« Sample tube loading approach vs. MAV/OS skirt design

— Continue to assess TPS alternatives
* Need material robustness yet low mass
« On-orbit thermal considerations also important
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Proposed MAV Tech Demo Plans

« Key objectives:
— Measure environments at Mars-relevant conditions
— Test out MAV technologies (e.g., LITVC, hybrid propulsion)

« Launch MAV vehicle from a high altitude balloon at ~30 km
altitude

— Balloon inflation and liftoff from a barge at sea
» Barge is 400 ft long to accommodate flight train

— Recovery of balloon and MAV demo vehicle

Anti-velocity burn to target entry conditions

Wind direction and reduce downrange. LITVC
. L N . . characterizationmaneuvers.
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